
BANDWIDTH-OPTIMIZED PARALLEL SPGEMM ALGORITHMS

USING PROPAGATION BLOCKING

Zhixiang Gu

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Master of Science

in the Department of Intelligent Systems Engineering,

Indiana University

December 2019

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Master of Science.

Committee

Ariful Azad, Ph.D.

Judy Fox, Ph.D.

Minje Kim, Ph.D.

Date: 12/15/2019

ii

Copyright c© 2019

Zhixiang Gu

iii

ACKNOWLEDGEMENTS

My work and this thesis owe their existence to the help, support and inspiration of many

many people.

I would like to thank Prof. Ariful Azad for proposing this project when I approached

him asking for a research opportunity. I am grateful to him for the patience, support,

motivation, encouragement, generosity and guidance over my master’s study.

I want to thank my groupmates - Taufique, Khaledur, and Nicholas, the discussions

with them, their technical suggestions, and encouragement are truly valuable.

I’d like to express my deepest gratitude to my family. I remember the first time I said I

want to pause my promising engineer career, challenge myself and pursue a higher degree

abroad, they supported me without a single doubt. My sincere appreciation also goes to my

girlfriend Xuejing, thanks for her understanding, sacrifice and help me through the difficult

times. Without all their love and encouragement, this amazing American journey wouldn’t

even get started.

I am blessed to have many friends at Indiana University: Bo, Changdong, Fanbo, Haici,

Hongwei, Jassi, Sahil, Shujun, Qianqian, Weizhe, Yafei, they make my time here quite

memorable.

iv

Zhixiang Gu

BANDWIDTH-OPTIMIZED PARALLEL SPGEMM ALGORITHMS USING

PROPAGATION BLOCKING

Sparse general matrix-matrix multiplication (SpGEMM) is a key kernel in many graph

algorithms, machine learning tasks, and high-performance applications. As it usually is the

dominating cost of computation, the performance of SpGEMM is critical. Thus, we’ve seen

many new SpGEMM algorithms and optimization strategies proposed over the years, but few

are targeting on bandwidth efficiency, which we believe is the key to deliver higher perfor-

mance.

In this work, we discuss the advantages and limitations of four different Matrix-Matrix

Multiplication formation. Based on the outer-product, we propose a bandwidth-optimized par-

allel SpGEMM algorithm using propagation blocking. Experiments show that OuterSpGEMM

achieves over 80% memory bandwidth in all major phases and significant speedups over state-

of-the-art competitors.

Ariful Azad, Ph.D.

Judy Fox, Ph.D.

Minje Kim, Ph.D.

v

vi

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . v

List of Tables . ix

List of Figures . x

Chapter 1: Introduction . 1

1.1 Background . 1

1.2 Performance Analysis and Optimization Strategy 2

1.3 Outline . 4

Chapter 2: Algorithmic variants for multiplying sparse matrices 5

2.1 The inner-product formation . 5

2.2 The column-by-column formation . 6

2.3 The outer-product formation . 7

Chapter 3: Technical Approach . 9

3.1 Implementation . 9

3.1.1 Symbolic Phase . 10

3.1.2 Expansion . 10

vii

3.1.3 Sorting . 12

3.1.4 Contraction . 14

3.2 Scheduling . 15

3.3 Selecting proper parameters for bins . 16

Chapter 4: Evaluation . 19

4.1 Evaluation Platform Setup . 19

4.2 Dataset . 21

4.3 Performance . 21

4.4 Scalability Analysis . 24

Chapter 5: Discussion . 26

Appendix A: Source code . 30

References . 31

Curriculum Vitae

viii

LIST OF TABLES

1.1 A summary of some widely-used sequential and parallel SpGEMM algo-
rithms . 2

4.1 Overview of Evaluation Environment setup 19

4.2 Stream benchmark result of the evaluation platform 20

4.3 NUMA bandwidth and latency . 20

4.4 A list of the real-world graphs used in our evaluation 22

4.5 Sustainable bandwidth speed achieved in four major steps 25

ix

LIST OF FIGURES

1.1 The roofline model on a Intel Skylake system 2

1.2 A comparison between attainable performance from the roofline model and
the practical number from best implementation on Erdős-Rényi matrices . . 3

2.1 Illustration of column-by-column formation. 6

2.2 Illustration of outer-product formation. 8

3.1 Illustration of propagation blocking step in the expansion phase 11

3.2 Illustration of accumulating step in the expansion phase 12

3.3 Using radix sort to sort a small integer array 13

3.4 Illustration of the in-place two pointers merge method, when the keys of
the elements are equal, perform add operation, otherwise, perform move
operation . 14

3.5 Evaluate three different scheduling policies on RMAT(scale=16) 17

3.6 Select two important parameters for OuterSpGEMM, local bin width and
number of bins . 17

4.1 Performance evaluation on Erdős-Rényi matrices using 24 threads, with a
fix scale 20 and increasing density . 23

4.2 Performance evaluation on R-MAT matrices using 24 threads, with a fix
scale 16 and increasing density . 23

4.3 Performance evaluation on real-world graphs 24

x

4.4 OuterSpGEMM scalability analysis on ER(20, 8), with increasing number
of threads . 24

4.5 Evaluation of single thread performance on ER(16,16) and R-MAT(16,16) . 25

5.1 Evaluation on high compression graphs 26

5.2 Execution time percentage analysis on ER matrices, scale=18 27

5.3 A potential NUMA-aware outer-product SpGEMM algorithm 28

xi

CHAPTER 1

INTRODUCTION

1.1 Background

Sparse general matrix-matrix multiplication (SpGEMM) is a key kernel in many data

analytics applications, and it dominates the overall cost of many iterative methods. For

example, SpGEMM is a key kernel in the computation of betweenness centrality [1], clus-

tering coefficients, triangle counting [2], multi-source breadth-first searching [3], colored

intersection searching [4], and cycle detection [5]. In scientific computing, SpGEMM is

used in algebraic multigrid [6] and linear solvers. Many machine learning tasks like Di-

mensionality Reduction (e.g., NMF, CX, PCA [7]), Clustering (e.g., Spectral Clustering

[8], Markov Clustering (MCL) [9]), etc., rely on an efficient SpGEMM algorithm as well.

Additionally, SpGEMM algorithms are applied to evaluate the chained product of sparse

Jacobians [10] and optimize join operations on modern relational databases [11].

The fact of the extensive usage and high-performance requirement contributes to the

popularity of studying SpGEMM algorithms. The sequential SpGEMM algorithm was

first introduced by Gustavson [12] in 1978, after that, considerable effort has been con-

tinuously devoted to obtaining higher performance, better scalability and memory/power

efficiency. On shared-memory platform, researchers have developed heap-, hash-, and

SPA-based SpGEMM algorithms, On distributed system, we have Sparse 1D Algorithm,

Sparse Cannon, Sparse SUMMA [13]. Table 1.1 summarizes some of the most widely-used

SpGEMM algorithms.

1

algorithm/software year platform description

Gustavson 1978 CPU - sequential row-wise
Matlab algorithm [14] 1992 CPU SPA accumulator
intel MKL 2007 CPU - multicore
cuSPARSE [15] 2010 GPU
Sparse SUMMA 2012 distributed 2D matrix partition
Kokkos-Kernels [16] 2014 CPU - manycore hash-map accumulator
Split-3D-SpGEMM [17] 2015 distributed 3D matrix partition
HashSpGEMM [18] 2016 CPU/GPU hash-table accumulator
HeapSpGEMM 2018 CPU - multicore heap accumulator

Table 1.1: A summary of some widely-used sequential and parallel SpGEMM algorithms

1.2 Performance Analysis and Optimization Strategy

Performance of graph algorithms can be extremely non-intuitive, especially consider-

ing there has been a large diversity in computer architectures. When designing a graph

algorithm, a simple model that offers performance guidelines could be valuable.

The roofline model [19] is just such a model, it combines specific architecture specifi-

cation and algorithm’s operation density into a simple performance chart. From a roofline

model, we can easily tell the current limitation of a given kernel.

Figure 1.1: The roofline model on a Intel Skylake system

2

Figure 1.1 is a roofline model plot based on a Intel Skylake system(detailed specifics

of the system is described in the Table 4.1). Given a kernel, we draw a vertical line based

on operational density(i.e. the ratio of flops executed per byte read), if the line hits the flat

green roof, it means the kernel is computation bound, if the line hits the slanted green roof,

the kernel is memory bound.

From the roofline performance model we know SpGEMM operations tend to have slow-

est, in fact, the performance could get even worse due to many practical factors. First,

sparse matrix input is stored in special data structures(e.g. CSR, CSC), SpGEMM algo-

rithms need auxiliary variables to access non-zeros and accumulator to store intermediate

results, this not only introduces additional data moving but also complicates the cache in-

ference. Second, the number of non-zeros are unknown beforehand, a precise memory

allocation before multiplication without overhead is impossible. Third, the non-zero pat-

tern or sparsity structure is unknown in advance, a naive parallelization will most likely

be load imbalanced and deliver poor performance. Figure 1.2 shows the performance gap

between current state-of-the-art implementation and attainable bound calculated from the

roofline model. Clearly, improving the operating density is the top priority.

Figure 1.2: A comparison between attainable performance from the roofline model and the
practical number from best implementation on Erdős-Rényi matrices

3

In addition, Figure 1.1 shows that the ceiling of cache hierarchy is much higher than

RAM’s, which points out a potential optimization strategy, if at some point we have to

access duplicated data, SpGEMM could still be efficient if this is done in cache.

1.3 Outline

The rest of thesis is structured as follows,

Chapter 2 introduces four different formations of Matrix Matrix Multiplication. In each

formation, we will describe its advantages and limitations. In this work we choose outer-

product formation for its promising efficiency in memory bandwidth.

In chapter 3 describes the proposed propagation blocking based outer-product algo-

rithm, we start with a overview, then expound the implementation of symbolic, multiplica-

tion, sort and merge, we will discuss the load balance strategy and parameter tuning in the

end of this chapter.

Chapter 4 shows the evaluation. We first bring up the environment setup and matrices

used in the Evaluation, specifically we will talk about NUMA effect. In the experiment, the

proposed OuterSpGEMM algorithm demonstrates high efficiency in memory bandwidth

and deliveries good performance, it outperforms the Hash-, Heap- SpGEMM algorithms in

most cases.

The end of this thesis is a chapter of discussion, where we point out in some extreme

circumstances that our algorithms might not excel in performance. In addition, we will

discuss a future work, which partitions the left input matrix and distributes the multiplica-

tion to multi sockets, this could completely avoid NUMA effect and deliver even higher

performance.

4

CHAPTER 2

ALGORITHMIC VARIANTS FOR MULTIPLYING SPARSE MATRICES

Given two matrices A ∈ Rm×k and B ∈ Rk×n, where k,m, n ∈ N, Matrix-Matrix

multiplication is the operation that computes

C = AB,where C ∈ Rm×n. (2.1)

For simplicity, we always consider n × n matrices unless otherwise specified. In this

thesis, we use Matlab like indexing. A(i, j) denotes the matrix entry at ith row and jth

column. A(i, :) denotes ith row of the matrix and A(:, j) denotes jth column of the matrix.

Depending on the formation, Matrix-Matrix multiplication can be categorized into sev-

eral methods, inner-product multiplication, outer-product multiplication, column-wise, and

row-wise multiplication. SpGEMM shares the same formation but takes two sparse matri-

ces as input. Although these formations all generate the same result, their performance can

vary a lot due to different data access patterns, unused floating point operations and their

memory requirements. Hence, different optimization strategies need to be applied to cope

with the data access and the underlying sparse matrix representations.

2.1 The inner-product formation

Algorithm 1 describes an inner-product based SpGEMM algorithm. Here, each element

can be independently computed. Therefore, inner product multiplication can achieve good

performance on large dense matrices. In addition, we can apply cache blocking, matrix

partitioning, and tiling to better improve the data locality. However, computing the inner

product on sparse matrices is not work efficient because of its O(n2) complexity (many

iterations are wasted just to compute zero entries). Hence, inner-product is almost never

5

Algorithm 1: Inner product formulation of matrix multiplication
for i← 1 to M do

for j ← 1 to N do
C(i, j) = A(i, :) × B(:, j) ;

Algorithm 2: Column-by-column formulation of matrix multiplication
for j ← 1 to N do

for k ← where B(k, j) 6= 0 do
C(:, j)← C(:, j) + A(:, k) × B(k, j) ;

Figure 2.1: Illustration of column-by-column formation.

used in SpGEMM algorithms.

2.2 The column-by-column formation

The column-wise multiplication forms one column of the output matrix C at a time as

shown in Algorithm 2. Figure 2.1 illustrates the formation of an output column (shown

in blue). Paralleling the column-wise multiplication is relatively easy since threads can

construct columns independently without any atomic operations. In addition, the memory

requirement of this formation is low since each output column is generated by merging a

subset of columns of A. Hence, this formation does not need to store duplicated (that is

unmerged) output entries. Likewise, row-wise formation shares the same advantages. In

fact, most of parallel SpGEMM algorithms are based on either column-wise or row-wise

formulation.

6

However, column-wise multiplication has some significant limitations. Consider a ran-

dom matrix where nonzero entris in a row or columns are uniformly distributed (also

known as the Erdős-Rényi model [20]). let A be an n× n matrix with d average nonzeros

per column. Hence, A has nd non-zeros in total. If we multiply A with itself to compute

A2, we need nd2 floating point operations (flops) in expectation. If we perform this com-

putation using the column-wise formation, we may observe two performance bottlenecks

in modern multicore processors.

The first issue is the memory latency overehead in accessing columns of A. Notice

that we have to read d columns of A to generate a column of C. As a result, a total of nd

columns of A will be read. In other words, this algorithm reads matrix A d times. Inefficient

cache-line usage is another concern. Since the input matrix is sparse, when we multiply the

column i of B with corresponding columns of A, those columns of A are rarely adjacent.

On the other hand, modern operating systems transfer data in a cache-line (in many cases,

64 bytes). The goal of doing this is to improve RAM efficiency since RAM works much

better if it can transport more data in a row without a new CAS signal. But in our case,

the size of a column can be smaller than a cache-line. In that case, every time we read a

cache-line size of data, we can only use a portion of the fetched cache line. As a result,

memory bandwidth may remain underutilized.

2.3 The outer-product formation

In the outer-product formation, the product is accumulated as the summation of n rank-

one matrices, as shown in Figure 2.2. Here, each rank-one sub matrix is the outer product

of column k of A and row k of B, which is summarized in Algorithm 3. An outer-product

SpGEMM usually follows ESC (expansion-sorting-contraction) [21] formula, which first

explicitly expands all temporary products to row-grouped global arrays, then iteratively

sorts and merges them to yield the final matrix.

Outer-product formation has two key limitations. First, the memory requirement is high

7

Algorithm 3: Outer product formulation of matrix multiplication
C ← 0;
for k ← 1 to K do

C ← C + A(:, k) × B(k, :) ;

Figure 2.2: Illustration of outer-product formation.

since outer-product needs to store all temporary unmerged product. That means, the total

memory requirement can be O(nd2) which is proportional to the floating point operations

in SpGEMM. Second, writing the expanded results back to memory is notoriously hard,

since each rank-one matrix is hyper sparse (nnz <n) [22]. Hence, directly writing rank-1

matrices may generate random memory traffic. Because of this problem, a naive outer-

product SpGEMM can only achieve less than 15% memory bandwidth utilization.

Nonetheless, the benefit of perfect theoretical full cache-line utilization and no redun-

dant memory access to non-zeros indicates the outer-product formation still could be very

efficient especially in terms of memory bandwidth utilization. This thesis extensively ex-

plores memory bandwidth optimization aspects of outer-product based SpGEMM.

8

CHAPTER 3

TECHNICAL APPROACH

3.1 Implementation

Outer product iteratively accesses a column from left matrix A and a row from right

matrix B, we store A in compressed Sparse Column (CSC) format and B in Compressed

Sparse Row (CSR) format, which provides constant-time access, and depends on the re-

quirement, the output can be either CSR or CSC.

Algorithm 5: OuterSpGEMM algorithm
Input: A in CSC, B in CSR
Output: C in CSR

1 C ← 0;
2 Symbolic (A, B);
3 for k ← 1 to K in parallel do
4 C ← PB (C + Expand (A(:, k), B(k, :))) . apply propagation blocking

moving tuples to global bins;

5 for i← 1 to nbins in parallel do
6 Ci← Sort (Ci) . perform radix sort on the key of rowid-colid;
7 Ci← Contract (Ci) . merge duplicated tuples by two-pointer method;

8 Convert (C, format=CSR);

As shown in the above pseudocode, our OuterSpGEMM extends the naive ESC. Before

multiplication, we have a symbolic phase to count the number of non-zeros and sense

the non-zero pattern, which will later be used in memory allocation and load balancing.

Then, in the numeric phase, we do multiplication but use the propagation blocking to move

generated tuples in a batch and group them by bins. We carefully select the number of bins

and bin width so that the following sorting and contraction operation can be done in the L2

cache to attain the best possible performance.

9

3.1.1 Symbolic Phase

To achieve best performance, we need to pre-allocate memory space before doing any

computation in order , but unlike dense matrix-matrix multiplication, the pattern and size

of the SpGEMM output is unknown beforehand. For outer-product formation, the prior

knowledge here is the number of floating-point of operations(also can be considered as

the number of non-zero entries generated in the multiplication). An easy way out is using

a linked-list [23] or a vector to allocates memory space during run-time. However, the

memory space allocated in this way may not be consecutive, thus resulting in poor reading

and writing performance.

In this work we use a symbolic method to count flops by simply walking through the

row and column pointers of the input matrices. In the CSR/CSC format, the difference

of two adjacent pointers is the number of non-zeros for the input row or column, so the

product of the two differences is going to be the number of flops of one sub-matrix that

contributes to the output of rowi.

Algorithm 6: Symbolic Phase
Input: A in CSC, B in CSR
Output: flops
flops← 0;
for i← firstcolumn to lastcolumn in parallel do

nnzright← B.rowptr[i + 1] - B.rowptr[i];
for j ← A.colptr[i] to A.colptr[i + 1] do

rowid← A.rowids[i];
flops[rowid] += nnzright;

Doing a symbolic step before multiplication can also help resolve load imbalance issue,

we will discuss it in Section 3.2.

3.1.2 Expansion

Multiplication is known as the most tricky part for outer product SpGEMM due to

extremely low writing locality, propagation blocking [24] is used in this paper to address

10

this issue. To better describe this algorithm, we separate propagation blocking into binning

and accumulating.

We read ith column from left matrix A and a corresponding jth row from right Matrix

B to perform outer-product multiplication, but instead of directly writing the triple to a

global accumulator according to the row id, each thread will only push triples to its own

local bins, which collect triples with a continuous range of rows assigned in the symbolic

phase(See Figure 3.1). With binning process applied, writing tuples is always consecutive

and we make sure the number of bins and the size of bins is small, usually 1024 bins and

512 bytes, so all the local bins together can easily fit in the cache.

Figure 3.1: Illustration of propagation blocking step in the expansion phase

Since our bin are very small, they can be easily filled after a couple of iterations, ac-

cumulator will be called to move the triples to a corresponding global bin(See Figure 3.2).

Like local bins, global bins also collect triples within the same row range that assigned in

the symbolic phase, except they are shared by all threads. When accumulating, reading can

enjoy cache speed, writing is also expected to hit the maximum memory bandwidth speed

since data access is all contiguous.

It’s worth noting that after the multiplication, there still could be some triples left in the

local bins, they were not moved before due to the host bin unfull, in order to get the correct

result we need to flush them out.

In addition, our propagation blocking also lowers the latency. Before our algorithm, one

of the major concerns of the outer product is the locking (synchronization) cost introduced

by the accumulating operation. When different threads accumulate non-zeros of the same

11

Figure 3.2: Illustration of accumulating step in the expansion phase

vertices, synchronization is unavoidable. But with propagation blocking we use bins to

move triples as a batch, this cost can be drastically lowered. The number of bins and the

bin width are two important parameters that can affect the expansion and sort performance,

in the following sections, we will show how to select them.

3.1.3 Sorting

OuterSpGEMM uses radix sort to sort unmerged tuples.

Radix sort is an integer sorting algorithm, it groups the keys of data by radix that share

the same significant position(key) and value (numeric value). Figure 3.3 demonstrates an

example of using LSD radix sort to sort a simple integer array. In base 10 (the decimal

system), this array needs a total of 3 passes to get sorted.

The main motivation to use radix sort is better performance. Radix sort is not comparison-

based, which means it will not be restricted by the Ω(n log n) lower bound, in fact, given

proper optimization, it can perform at linear time level. Here are two optimizations we’ve

done in this work:

First, the performance of radix sort is strongly related to the number of bits in the key.

12

Figure 3.3: Using radix sort to sort a small integer array

In our case, we are using tuples to represent the generated flops, but radix sort can only sort

on integer keys, so we concat the rowid and column id, and then the sorting key can be as

simple as a 64-bit integer. However, a 64-bit integer key needs 8 passes to get sorted(8-bit

per pass). Since in we are storing tuples in bins, we can use the modular index in the bin

and concat it with column id, potentially squeeze them into a 32-bit integer, doing so we

are able to save significant amount of data transfer.

Second, radix sort moves data between the source array and buffer array for multiple

times, the performance will improve significantly if the dataset can be fit into cache. Mod-

ern computer cache hierarchy can be very complicated, in Intel Skylake system, L3 cache is

usually larger, but it’s non-inclusive and shared by all the cores in the socket, which makes

the performance non-predictable. In order to get a sustainable performance, we choose to

use L2 cache. Let’s flops be the number of flops generated in the multiplication, and we

use n bins to block them, we need to make sure flops/n is smaller than the size of one L2

cache. More detailed discussion will be shown in next sections.

13

In our preliminary evaluation, we compare the performance against some most popular

algorithms like the std::sort, vergesort, timsort, qsort, pdqsort, the radix sort outperforms

all of them.

3.1.4 Contraction

During contraction phase we merge duplicated tuples, duplicated tuples are tuples that

share the same key(i.e. (rowid, colid) pair), in which case we merge them to one tuple but

summing the numeric value.

In this work, we use a two-pointer method, which only walks the array once. The first

pointer (p1) walks through the array, the second pointer (p2) maintain the location to be

merged. Every time when p1 points to a new location it checks with p2, if the keys of the

two triples are the same, simply add the numeric value of the first triple to the second, if

not, we move p2 to the next location and copy the triple2 there, keep doing this until the p1

reach the end of the array.

Figure 3.4: Illustration of the in-place two pointers merge method, when the keys of the
elements are equal, perform add operation, otherwise, perform move operation

14

3.2 Scheduling

Static, dynamic, guided are the three main scheduling policies provided in OpenMP.

Static scheduling divides the loop into fixed-sized chunks by the number of threads

multiplied by the chunk size. Dynamic scheduling employs a internal work queue to assign

a chunk-sized block of work(loop iterations) to threads, and when a thread finishes its

work, it gets a new assigned work from the top of the queue until the queue is empty.

Guided scheduling looks similar to dynamic scheduling, but the chunk size starts off large

and decreases according to the work amount left.

Related work [18, 25] has shown that in a well-balanced situation, we should choose

static scheduling due to lowest overhead, it’s best to avoid dynamic/guided scheduling

because the scheduling cost can be huge on large loops.

Nagasaka also proposed a light-weight load balancing scheme [18], it assigns threads

with equal amount of continuous work before symbolic and numeric phase. Our work

is a bit more complex, When dealing with scale-free graph, we identify the load imbal-

ance coming from two major parts. First, since the input graph is scale-free, the number

of non-zeros in some rows/columns can be significantly larger than the others. Second,

when multiplying two scale-free graphs, load imbalance is mirrored to our global bins, the

number of flops in some bins could be significantly larger than others, which makes sort

out-of-cache.

We extend this balancing technique to a 2-way load balancing scheme, which is shown

in the algorithm 7. It not only feeds equal amount of work to threads, which keeps the

expansion phase balanced, but also keeps a similar amount of tuples in global bins to be

sorted by using variable bins that block tuples from different range of column-row pairs.

Figure 3.5 shows a preliminary evaluation of OuterSpGEMM using static scheduling,

dynamic scheduling and the proposed 2-way balanced scheduling on scale 16 R-MAT ma-

trices. R-MAT matrix follows power law distribution, some rows contain significant more

15

Algorithm 7: OuterSpGEMM 2-way balanced-scheduling algorithms
Input: A in CSC, B in CSR
Output: (1) an array m, works as a lookup table, that points tuples to

corresponding global bin; (2) an array f sets the loop work offset for
threads

1 flops← 0 . count flop by output row;
2 work← 0 . count per loop generated flop;
3 for i← firstcolumn to lastcolumn in parallel do
4 nnzleft← A.colptr[i + 1] - A.colptr[i];
5 nnzright← B.rowptr[i + 1] - B.rowptr[i];
6 work[i]← nnzleft × nnzright;
7 for j ← A.colptr[i] to A.colptr[i + 1] do
8 flops[[A.rowids[i]] += nnzright;

9 flopsps← PrefixSum (flops);
10 avgwork ← Sum (work) / nthreads . assign average amount of work to threads;
11 avgflops← Sum (flops) / nbins . assign average amount tuples to bins;
12 for tid← 1 to nthreads do
13 m[tid]← LowBound (flopsps, avgflops · tid);

14 cur bin id← 0;
15 cur volumn← 0;
16 for rowid← firstcolumn to lastcolumn do
17 m[rowid] = cur bin id;
18 cur volumn += work[rowid];
19 . if a thread complains about too much work, assign next;
20 if if cur volumn > avgwork then
21 cur bin id ++;
22 cur volumn = 0;

non-zeros than others. As discussed before, the naive static scheduling assigns even number

of rows(work) to threads, resulting in heavy load imbalance. Dynamic scheduling doesn’t

do much better due to schedule overhead and sorting out of cache. Our balanced scheduling

demonstrated significant improvement.

3.3 Selecting proper parameters for bins

Two parameters are important to the performance of this algorithm, the local bin width

and the number of bins.

The local bins are used to improve data locality when writing tuples. Since modern

16

Figure 3.5: Evaluate three different scheduling policies on RMAT(scale=16)

(a) Select local bin width (b) Select number of bins, 12M flops, 1MB L2
cache

Figure 3.6: Select two important parameters for OuterSpGEMM, local bin width and num-
ber of bins

operating system transfers data one cache line at a time, if our bin width is bigger than

a cache line, we should hit the peak memory bandwidth. Also, increase the width of bin

reduce the atomic communication cost between local bins and global bins. Once the size

of local bins is bigger than the size of last line cache, the performance drops due to cache

miss(See left chart in Figure 3.6).

Ideally, the size of bin to be as large as possible but all local bins could still fit in L2

cache. let n threads be the number of threads used, size L2 as the size of total last level

cache, n bins as the number of bins for each thread, the maximum local bin width is:

S =
size L2

n threads× n bins
(3.1)

17

In OuterSpGEMM, we select 512 bytes for the local bin width due to consistent obser-

vation of better performance.

On the other hand, the parameter nbins is a trade-off between locality in the propagation

blocking and the sorting phase. Increasing the number of bins will decrease the average

number of flops in each global bin so the dataset to be sorted can be fit into lower level

cache, enjoying faster cache speed and lower latency, but binning phase will need to pay

more memory latency and have a higher cache miss.

We want to find a balanced point where these two phases can both get good perfor-

mance, the maximum number of bins can be calculated. Given a SpGEMM (C = A × B),

let flops be the number of total tuples generated, the size of L2 cache divide by the size of

tuple is the maximum size of array to be sorted in cache, together we have a inequality:

flops

nbins
<

size L2/size tuple

2 · k
(3.2)

We added a (2 · k) to the denominator of the right side of the inequality 3.2 because in

the radix sort we need to keep both source array, buffer array and some counters in cache.

Based on our experience, the value of k is around 1.8.

18

CHAPTER 4

EVALUATION

For the evaluation, we compare the performance of OuterSpGEMM against Hash-

SpGEMM, HashVecSpGEMM, HeapSpGEMM, which are implemented based on state-

of-the-art algorithms. All the softwares share the same libraries, so we can exclude the

concern addressed in some related research that it could affect the result.

4.1 Evaluation Platform Setup

Evaluation are primarily conducted on a single node from IU FutureSystem supercom-

puter, this particular server is equipped with Intel Skylake dual-socket processor, it has 24

cores per socket and a total of 33MB last line cache(L3 cache). Detailed platform informa-

tion is described in Table 4.1.

FutureSystems server
CPU Intel(R) Xeon(R) Platinum 8160
micro-architecture Skylake
#Sockets 2
#Cores/socket 24
Clock 2.1GHz
L1(i/d) cache 32KB/32KB
L2 cache 1024K
L3 cache 33792K
Memory
Size 250GB
Bandwidth 100GB/s
Software
OS Red Hat Enterprise Linux Server 7.6 (Maipo)
Compiler gcc version 8.2.0
Option -g -dynamic -fopenmp -O3

Table 4.1: Overview of Evaluation Environment setup

19

As we mentioned in the previous introduction chapter, SpGEMM is purely memory

bound, so a large factor of performance is how fast the data can be transferred between

processors and memory. Measuring these is important to establish a baseline for the system

under test, and for performance analysis.

So we exam this carefully with the STREAM benchmark [26], which uses a synthetic

benchmark to measure sustainable memory bandwidth of four simple vector kernels (Copy,

Scale, Add and Triad). Our experiment result (see Table 4.2) shows this system has a

memory bandwidth roughly around 100GB/s in practice.

Copy Scale Add Triad

single socket 47404.1 46847.0 54002.5 57042.7
dual socket 97731.9 87432.6 107004.7 108419.3

Table 4.2: Stream benchmark result of the evaluation platform

However, this could be more complicated if we consider a multi-socket system where

Non-Uniform Memory Access (NUMA) [27] is enabled, local memory latencies and cross-

socket memory bandwidth and memory latencies will vary significantly. Table 4.3 de-

scribes the local access and cross-socket access memory bandwidth from STREAM copy

kernel, as well as the memory latency stats that reported by Intel Memory Latency Checker.

NUMA socket 0 NUMA socket 1

NUMA socket 0 50.26GB/s and 88.1ns 33.36GB/s and 147.4ns
NUMA socket 1 34.06GB/s and 146.7ns 50.12GB/s and 88.3ns

Table 4.3: NUMA bandwidth and latency

NUMA systems are quite popular these days because they are capable of scaling to

many more cores than traditional architectures, but surprisingly, most existing SpGEMM

algorithms have not yet optimized for it. This work doesn’t intend to cover NUMA aware-

ness or any platform specifics, in order to fairly compare the performance of algorithm

20

itself, we set ”OMP PLACES” to ”cores”, ”OMP PROC BIND” to ”close”, the memory

allocation is restricted in numa node 0 by ”numactl –membind=0”, in this way, we ensure

the memory access is local node only.

We will describe a potential improvement in the discussion section, which splits the

matrix to multiple partition and distributes them to multi sockets, in this way we can avoid

NUMA effect.

4.2 Dataset

Related work [18] has shown that different SpGEMM algorithms can dominate others

depending on the aspect ratio (i.e. ratio of its dimensions), density, sparsity structure,

and size (i.e. dimensions) of its inputs. In order to thoroughly and fairly compare the

algorithms’ performance, the dataset has to respect these metrics.

In our experiments, we use the R-MAT recursive matrix generator [28] to synthetic

matrices for algorithm feature study and preliminary performance evaluation. Erdős-Rényi

is binomial random graph, we can set the R-MAT seed parameters to a=b=c=d=0.25 to

ensure uniformly random. The parameters for G-500 are set to a=0.57, b=c=0.19, d=0.05 to

demonstrate strong power-law degree distribution. In addition, 12 real-world matrices from

SuiteSparse Matrix Collection [29][30] are added to the dataset, the following table 4.4

summarizes the key characteristics of the real-world graphs that used in our experiments.

In the following sections, we denote the d as the edge factor, nnz as the number of the

non-zeros, flops as the floating point operations or tuples generated during multiplication,

CR as the compression ratio, n is the number of rows/columns of the matrix. For example,

Given a matrix with scale m and edge factor d, the n and nnz should be 2n, 2nd respectively.

4.3 Performance

We first study the performance on synthetic matrices.

Erdős-Rényi is uniformly random model and it is the very basic case in SpGEMM.

21

Graph thumb n(A) nnz(A) d(A) flops(C) nnz(C) CR(C)

2cubes sphere 101.5K 1.6M 16.23 27.5M 9.0M 3.06

amazon0505 410.2K 3.4M 8.18 31.9M 16.1M 1.98

cage12 130.2K 2.0M 15.61 34.6M 15.2M 2.14

m133 b3 200.2K 800.8K 4.00 3.2M 3.2M 1.01

majorbasis 160.0K 1.8M 10.94 19.2M 8.2M 2.33

mc2depi 525.8K 2.1M 3.99 8.4M 5.2M 1.6

offshore 259.8K 4.2M 16.33 71.3M 69.8M 3.05

patents main 240.5K 560.9K 2.33 2.6M 2.3M 1.14

scircuit 171.0K 958.9K 5.61 8.7M 5.2M 1.66

web-Google 916.4K 5.1M 5.57 60.7M 29.7M 2.04

hood 220.5K 9.9M 44.87 562.0M 34.2M 16.41

cant 62.5K 4.0M 64.17 269.5M 17.4M 15.45

Table 4.4: A list of the real-world graphs used in our evaluation

Figure 4.1 describes the performance and bandwidth on scale-20 graphs with increasing

density. We can tell from the figure that OuterSpGEMM shows good performance and

it almost hit the maximum bandwidth. R-MAT, on the other hand, follows power law

distribution, and it is a good case to evaluate the performance with a load imbalanced

situation, Figure 4.2 shows the result on scale-16 R-MAT graphs with increasing density,

similarly, OuterSpGEMM wins the most of the time. Although on low edge factor case, as

many rows don’t have even one non-zero, our local bins are never full and the bin-to-bin

22

copy is less efficient, thus a slightly lower bandwidth.

(a) Performance evaluation on Erdős-Rényi ma-
trices with fix scale 20 and increasing edge fac-
tor(density)

(b) Evaluation of Memory bandwidth of Outer-
SpGEMM during the expansion phase

Figure 4.1: Performance evaluation on Erdős-Rényi matrices using 24 threads, with a fix
scale 20 and increasing density

(a) Performance evaluation on R-MAT matri-
ces with fix scale 16 and increasing edge fac-
tor(density)

(b) Evaluation of Memory bandwidth of Outer-
SpGEMM during the expansion phase

Figure 4.2: Performance evaluation on R-MAT matrices using 24 threads, with a fix scale
16 and increasing density

We also study the performance on real-world graphs described in table 4.4. The re-

sult 4.3 meets our expectation, HashSpGEMM gets significant boost when the output has

a high compression ratio, HeapSpGEMM maintains consistent numbers no matter of com-

pression ratio changes, it gets better when the output is sparse. In most cases(CR < 3), our

OuterSpGEMM outperforms them all.

23

Figure 4.3: Performance evaluation on real-world graphs

4.4 Scalability Analysis

Scalability is important to graph algorithms since many of them are ran on many-core,

multi-core and distributed architecture where tens or hundreds of cores are available, we’d

like to see a performance boost if put more resources. However, SpGEMM operation is

memory bound, in other word, the performance will keep increasing until at some point it

stops, and the peak performance is determined by maximum memory bandwidth available.

A SpGEMM algorithm with good scalability actually means (1), the algorithm’s perfor-

mance can increase given more threads if memory is not bound (2), the performance gain

per thread is high.

Figure 4.4: OuterSpGEMM scalability analysis on ER(20, 8), with increasing number of
threads

Figure 4.4 shows the performance speedup of four key phases of OuterSpGEMM, com-

24

pb sort merge convert

bandwidth(GB/s) 48.13 171.83 72.03 44.98

Table 4.5: Sustainable bandwidth speed achieved in four major steps

pared to their single-thread performance. Propagation blocking(expansion), merge and

convert stop increasing performance at about 12 threads, where they achieved maximum

memory bandwidth available on a single NUMA socket. Sort, as expected, goes a bit fur-

ther benefiting from using cache. Table 4.5 describes the sustainable bandwidth achieved

these four major steps.

Figure 4.5: Evaluation of single thread performance on ER(16,16) and R-MAT(16,16)

It is also worth noting that due to a higher memory bandwidth utilization and cache

awareness, OuterSpGEMM achieves its best performance faster than many other algo-

rithms(using less number of threads). As shown in the Figure 4.5, the single-thread per-

formance is higher as well, which makes OuterSpGEMM a good fit in experimental or

non-supercomputing environments like MATLAB.

25

CHAPTER 5

DISCUSSION

In this work we studied four different matrix-matrix multiplication and implemented a

bandwidth-optimized parallel SpGEMM algorithm using propagation blocking. According

to our experiments, the OuterSpGEMM achieves satisfactory memory bandwidth utiliza-

tion, scalability, and it outperforms state-of-the-art HashSpGEMM and HeapSpGEMM in

many general cases. However, we have to admit OuterSpGEMM has some limitations(there

is yet no perfect SpGEMM algorithm), that’s why so many new SpGEMM algorithms are

still coming up, they are tailored for different applications and architectures and will shine

in different scenarios. At the end of this thesis we want to discuss a few things and future

work.

One of the concern is the sensitivity to compression ratio. Our OuterSpGEMM expands

and sorts on unmerged entries(i.e. O(flops)), but HashSpGEMM operates on merged

entries(i.e. O(nnz)). In other word, HashSpGEMM can enjoy can significant performance

boost on high compression ratio graphs, but OuterSpGEMM and HeapSpGEMM can’t.

Figure 5.1: Evaluation on high compression graphs

Figure 5.1 shows the experiment ran on hood and cant, the compression ratio of these

two graphs is higher than 15, hash based algorithms clearly dominated the game and is

26

to 10x speedup faster over the others. In practice, such cases are not common but indeed

exists, we can implement a hybrid SpGEMM that falls back to HashSpGEMM when a high

compression ratio detected(CR > 3).

One other issue is the sensitivity to number of flops. OuterSpGEMM sorts tuples before

merging, it moves tuples back-forward multiple times so it is very important to keep the

sort partition in the cache. In Figure 5.2 the left chart shows that if the matrix is big enough

the sort phase could out of cache thus dominating the execution time, and performance

suffers.

(a) Evaluation of Memory bandwidth of Outer-
SpGEMM during the expansion phase

(b) Performance evaluation on Erdős-Rényi ma-
trices with fix scale 18 and increasing edge fac-
tor(density)

Figure 5.2: Execution time percentage analysis on ER matrices, scale=18

As shown in section 3.3, the size of sort partition is related to number of bins since it

equals to flops/n bins. At some point we have to increase the number of bins, the right

chart in figure 5.2 shows the performance improvement using 4k bins(the red bar) over 1k

bins(the blue bar), which trades the expansion phase bandwidth efficiency for better sorting

and overall performance.

In addition, as discussed in section 4.1, NUMA effect could play a significant role in

memory bandwidth and latency, it’s hard to avoid and most SpGEMM algorithms have

to comply and pay the price. Figure 5.3 describes a potential way out, a NUMA-aware

outer-product SpGEMM algorithm.

Given a C = A × B, partition the left matrix A into an upper half Ap1 and lower half

27

Figure 5.3: A potential NUMA-aware outer-product SpGEMM algorithm

Ap2, then we assign the upper multiplication AP1 × B to NUMA socket 1, and the lower

multiplication goes to NUMA socket 2. In iterative methods where SpGEMM serves as

the key primitive and is called multiple times, threads pinned in each NUMA socket first

initialize their own A partition so the memory will be allocated in corresponding socket, in

this way, cross-socket memory access should be eliminated.

Furthermore, this method could extend to multi-socket systems and/or split the A into

multiple partitions. An extra benefit is lower memory/cache requirement, since each time

we will be dealing with a much smaller matrix and generating smaller amount of flops.

28

Appendices

29

APPENDIX A

SOURCE CODE

Our OuterSpGEMM implementation on share memory architectures is opensource soft-

ware and licensed under the Apache License, Version 2.0, it is available at bitbucket(https:

//bitbucket.org/azadcse/outerspgemm/).

We also include the source code for HashSpGEMM and HeapSpGEMM, implemented

by Yusuke Nagasaka.

A script to generate synthetic matrices and download real-world matrices can be found

in the repository as well.

30

https://bitbucket.org/azadcse/outerspgemm/
https://bitbucket.org/azadcse/outerspgemm/

REFERENCES

[1] Aydin Buluç and John R Gilbert. “The Combinatorial BLAS: Design, Implementa-

tion, and Applications”. In: Int. J. High Perform. Comput. Appl. 25.4 (Nov. 2011),

pp. 496–509.

[2] Ariful Azad, Aydin Buluç, and John Gilbert. “Parallel Triangle Counting and Enu-

meration Using Matrix Algebra”. In: Proceedings of the 2015 IEEE International

Parallel and Distributed Processing Symposium Workshop. IPDPSW ’15. Wash-

ington, DC, USA: IEEE Computer Society, 2015, pp. 804–811. ISBN: 978-1-4673-

7684-6.

[3] John R. Gilbert, Steve Reinhardt, and Viral B. Shah. “High-performance Graph Al-

gorithms from Parallel Sparse Matrices”. In: Proceedings of the 8th International

Conference on Applied Parallel Computing: State of the Art in Scientific Computing.

PARA’06. Umeå, Sweden: Springer-Verlag, 2007, pp. 260–269. ISBN: 3-540-

75754-6, 978-3-540-75754-2.

[4] Haim Kaplan, Micha Sharir, and Elad Verbin. “Colored Intersection Searching via

Sparse Rectangular Matrix Multiplication”. In: Proceedings of the Twenty-second

Annual Symposium on Computational Geometry. SCG ’06. Sedona, Arizona, USA:

ACM, 2006, pp. 52–60. ISBN: 1-59593-340-9.

[5] Raphael Yuster and Uri Zwick. “Detecting Short Directed Cycles Using Rectangu-

lar Matrix Multiplication and Dynamic Programming”. In: Proceedings of the Fif-

teenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’04. New Or-

leans, Louisiana: Society for Industrial and Applied Mathematics, 2004, pp. 254–

260. ISBN: 0-89871-558-X.

31

[6] Grey Ballard, Christopher M. Siefert, and Jonathan J. Hu. “Reducing Communica-

tion Costs for Sparse Matrix Multiplication within Algebraic Multigrid”. In: SIAM

J. Scientific Computing 38 (2015).

[7] Xu Feng, Yuyang Xie, Mingye Song, Wenjian Yu, and Jie Tang. “Fast Randomized

PCA for Sparse Data”. In: ACML. 2018.

[8] Yu Jin and Joseph JáJá. “A High Performance Implementation of Spectral Cluster-

ing on CPU-GPU Platforms”. In: 2016 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW) (2016), pp. 825–834.

[9] Ariful Azad, Georgios Pavlopoulos, Christos Ouzounis, Nikos Kyrpides, and Ay-

din Buluç. “HipMCL: a high-performance parallel implementation of the Markov

clustering algorithm for large-scale networks”. In: Nucleic Acids Research 46 (Jan.

2018), pp. 1–11.

[10] Andreas Griewank and Uwe Naumann. “Accumulating Jacobians as chained sparse

matrix products”. In: Math. Program. 95 (Mar. 2003), pp. 555–571.

[11] Rasmus Resen Amossen and Rasmus Pagh. “Faster Join-projects and Sparse Matrix

Multiplications”. In: Proceedings of the 12th International Conference on Database

Theory. ICDT ’09. St. Petersburg, Russia: ACM, 2009, pp. 121–126. ISBN: 978-1-

60558-423-2.

[12] Fred G. Gustavson. “Two Fast Algorithms for Sparse Matrices: Multiplication and

Permuted Transposition”. In: ACM Trans. Math. Softw. 4 (1978), pp. 250–269.

[13] Aydin Buluç and John Gilbert. “Challenges and Advances in Parallel Sparse Matrix-

Matrix Multiplication”. In: Oct. 2008, pp. 503–510. ISBN: 978-0-7695-3374-2.

[14] John R. Gilbert, Cleve. Moler, and Robert. Schreiber. “Sparse Matrices in MAT-

LAB: Design and Implementation”. In: SIAM Journal on Matrix Analysis and Ap-

plications 13.1 (1992), pp. 333–356. eprint: https://doi.org/10.1137/

0613024.

32

https://doi.org/10.1137/0613024
https://doi.org/10.1137/0613024

[15] NVIDIA Corporation. The NVIDIA CUDA Sparse Matrix library.

[16] H. C. Edwards and C. R. Trott. “Kokkos: Enabling Performance Portability Across

Manycore Architectures”. In: 2013 Extreme Scaling Workshop (xsw 2013). 2013,

pp. 18–24.

[17] Ariful Azad, Grey Ballard, Aydin Buluç, James Demmel, Laura Grigori, Oded Schwartz,

Sivan Toledo, and Samuel Williams. “Exploiting Multiple Levels of Parallelism in

Sparse Matrix-Matrix Multiplication”. In: SIAM J. Scientific Computing 38 (2016).

[18] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydin Buluç. “Performance

optimization, modeling and analysis of sparse matrix-matrix products on multi-core

and many-core processors”. In: Parallel Computing 90 (Aug. 2019), p. 102545.

[19] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: An Insightful

Visual Performance Model for Multicore Architectures”. In: Commun. ACM 52.4

(Apr. 2009), pp. 65–76.

[20] P. Erdös and A. Rényi. “On Random Graphs I”. In: Publicationes Mathematicae

Debrecen 6 (1959), p. 290.

[21] Steven Dalton, Luke Olson, and Nathan Bell. “Optimizing Sparse Matrix&Mdash;Matrix

Multiplication for the GPU”. In: ACM Trans. Math. Softw. 41.4 (Oct. 2015), 25:1–

25:20.

[22] Aydin Buluç and John Gilbert. “On the representation and multiplication of hyper-

sparse matrices”. In: Apr. 2008, pp. 1–11.

[23] S. Pal, J. Beaumont, D. Park, A. Amarnath, S. Feng, C. Chakrabarti, H. Kim, D.

Blaauw, T. Mudge, and R. Dreslinski. “OuterSPACE: An Outer Product Based Sparse

Matrix Multiplication Accelerator”. In: 2018 IEEE International Symposium on High

Performance Computer Architecture (HPCA). 2018, pp. 724–736.

33

[24] S. Beamer, K. Asanović, and D. Patterson. “Reducing Pagerank Communication

via Propagation Blocking”. In: 2017 IEEE International Parallel and Distributed

Processing Symposium (IPDPS). 2017, pp. 820–831.

[25] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. “High-performance

sparse matrix-matrix products on Intel KNL and multicore architectures”. In: Pro-

ceedings of the 47th International Conference on Parallel Processing Companion.

2018, pp. 1–10.

[26] John D. McCalpin. “Memory Bandwidth and Machine Balance in Current High Per-

formance Computers”. In: IEEE Computer Society Technical Committee on Com-

puter Architecture (TCCA) Newsletter (Dec. 1995), pp. 19–25.

[27] Christoph Lameter. “NUMA (Non-Uniform Memory Access): An Overview”. In:

Queue 11.7 (July 2013), 40:40–40:51.

[28] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. “R-MAT: A Recursive

Model for Graph Mining”. In: Proceedings of the 2004 SIAM International Confer-

ence on Data Mining, pp. 442–446. eprint: https://epubs.siam.org/doi/

pdf/10.1137/1.9781611972740.43.

[29] Paolo Boldi and Sebastiano Vigna. “The WebGraph Framework I: Compression

Techniques”. In: Proc. of the Thirteenth International World Wide Web Conference

(WWW 2004). Manhattan, USA: ACM Press, 2004, pp. 595–601.

[30] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. “Layered Label

Propagation: A MultiResolution Coordinate-Free Ordering for Compressing Social

Networks”. In: Proceedings of the 20th international conference on World Wide Web.

Ed. by Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra,

Elisa Bertino, and Ravi Kumar. ACM Press, 2011, pp. 587–596.

34

https://epubs.siam.org/doi/pdf/10.1137/1.9781611972740.43
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972740.43

VITA

2018 - present Master student, Indiana University Bloomington

2019, summer Software Engineer Intern, Facebook Inc.

2016 - 2018 Software Engineer, Xiachufang Technology Inc., Beijing

2012 - 2016 B.S., Beijing University of Technology

FIELD OF STUDY

Major Field: Computer Engineering, Intelligent Systems Engineering

	Title Page
	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Performance Analysis and Optimization Strategy
	Outline

	Algorithmic variants for multiplying sparse matrices
	The inner-product formation
	The column-by-column formation
	The outer-product formation

	Technical Approach
	Implementation
	Symbolic Phase
	Expansion
	Sorting
	Contraction

	Scheduling
	Selecting proper parameters for bins

	Evaluation
	Evaluation Platform Setup
	Dataset
	Performance
	Scalability Analysis

	Discussion
	Source code
	References
	Curriculum Vitae

